Package: footBayes 2.0.0

footBayes: Fitting Bayesian and MLE Football Models

This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t, diagonal-inflated bivariate Poisson, and zero-inflated Skellam. It supports both maximum likelihood estimation (MLE, for 'static' models only) and Bayesian inference. For Bayesian methods, it incorporates several techniques: MCMC sampling with Hamiltonian Monte Carlo, variational inference using either the Pathfinder algorithm or Automatic Differentiation Variational Inference (ADVI), and the Laplace approximation. The package compiles all the 'CmdStan' models once during installation using the 'instantiate' package. The model construction relies on the most well-known football references, such as Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>, Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.

Authors:Leonardo Egidi [aut, cre], Roberto Macrì Demartino [aut], Vasilis Palaskas. [aut]

footBayes_2.0.0.tar.gz
footBayes_2.0.0.zip(r-4.5)footBayes_2.0.0.zip(r-4.4)footBayes_2.0.0.zip(r-4.3)
footBayes_2.0.0.tgz(r-4.5-x86_64)footBayes_2.0.0.tgz(r-4.5-arm64)footBayes_2.0.0.tgz(r-4.4-x86_64)footBayes_2.0.0.tgz(r-4.4-arm64)footBayes_2.0.0.tgz(r-4.3-x86_64)footBayes_2.0.0.tgz(r-4.3-arm64)
footBayes_2.0.0.tar.gz(r-4.5-noble)footBayes_2.0.0.tar.gz(r-4.4-noble)
footBayes_2.0.0.tgz(r-4.4-emscripten)footBayes_2.0.0.tgz(r-4.3-emscripten)
footBayes.pdf |footBayes.html
footBayes/json (API)
NEWS

# Install 'footBayes' in R:
install.packages('footBayes', repos = c('https://leoegidi.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/leoegidi/footbayes/issues

Datasets:
  • england - English league results 1888-2022
  • italy - Italy league results 1934-2022

On CRAN:

Conda:

7.43 score 42 stars 53 scripts 614 downloads 15 exports 68 dependencies

Last updated 7 days agofrom:73fb6d6948. Checks:12 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 16 2025
R-4.5-win-x86_64OKMar 16 2025
R-4.5-mac-x86_64OKMar 16 2025
R-4.5-mac-aarch64OKMar 16 2025
R-4.5-linux-x86_64OKMar 16 2025
R-4.4-win-x86_64OKMar 16 2025
R-4.4-mac-x86_64OKMar 16 2025
R-4.4-mac-aarch64OKMar 16 2025
R-4.4-linux-x86_64OKMar 16 2025
R-4.3-win-x86_64OKMar 16 2025
R-4.3-mac-x86_64OKMar 16 2025
R-4.3-mac-aarch64OKMar 16 2025

Exports:btd_footcauchycompare_footfoot_abilitiesfoot_probfoot_rankfoot_round_robinlaplacemle_footnormalplot_btdPosteriorplot_logStrengthpp_footstan_footstudent_t

Dependencies:abindbackportsBHcallrcheckmateclicolorspacecpp11DEoptimRdescdistributionaldplyrextraDistrfansifarverfsgenericsggplot2ggridgesgluegridExtragtableinlineinstantiateisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmetRologymgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpspurrrQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelreshape2rlangrobustbaserstanscalesStanHeadersstringistringrtensorAtibbletidyrtidyselectutf8vctrsviridisLitewithr

Fitting football models and visualizing predictions with the footBayes package

Rendered fromfootBayes_a_rapid_guide.Rmdusingknitr::rmarkdownon Mar 16 2025.

Last update: 2025-03-16
Started: 2022-01-26