Package: footBayes 0.2.0

footBayes: Fitting Bayesian and MLE Football Models

This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t, diagonal-inflated bivariate Poisson, and zero-inflated Skellam. The package allows Hamiltonian Monte Carlo (HMC) estimation through the underlying Stan environment and Maximum Likelihood estimation (MLE, for 'static' models only). The model construction relies on the most well-known football references, such as Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>, Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.

Authors:Leonardo Egidi[aut, cre], Vasilis Palaskas[aut].

footBayes_0.2.0.tar.gz
footBayes_0.2.0.zip(r-4.5)footBayes_0.2.0.zip(r-4.4)footBayes_0.2.0.zip(r-4.3)
footBayes_0.2.0.tgz(r-4.4-any)footBayes_0.2.0.tgz(r-4.3-any)
footBayes_0.2.0.tar.gz(r-4.5-noble)footBayes_0.2.0.tar.gz(r-4.4-noble)
footBayes_0.2.0.tgz(r-4.4-emscripten)footBayes_0.2.0.tgz(r-4.3-emscripten)
footBayes.pdf |footBayes.html
footBayes/json (API)
NEWS

# Install 'footBayes' in R:
install.packages('footBayes', repos = c('https://leoegidi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/leoegidi/footbayes/issues

Datasets:
  • england - English league results 1888-2022
  • italy - Italy league results 1934-2022

On CRAN:

5.65 score 42 stars 53 scripts 220 downloads 11 exports 139 dependencies

Last updated 29 days agofrom:e50cec331c. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winNOTEOct 25 2024
R-4.5-linuxNOTEOct 25 2024
R-4.4-winNOTEOct 25 2024
R-4.4-macNOTEOct 25 2024
R-4.3-winNOTEOct 25 2024
R-4.3-macNOTEOct 25 2024

Exports:cauchyfoot_abilitiesfoot_probfoot_rankfoot_round_robinlaplacemle_footnormalpp_footstan_footstudent_t

Dependencies:abindarmaskpassbackportsbase64encbayesplotBHbitbit64blobbootbroombslibcachemcallrcellrangercheckmateclicliprcodacolorspaceconflictedcpp11crayoncurldata.tableDBIdbplyrDEoptimRdescdigestdistributionaldplyrdtplyrevaluateextraDistrfansifarverfastmapfontawesomeforcatsfsgarglegenericsggplot2ggridgesgluegoogledrivegooglesheets4gridExtragtablehavenhighrhmshtmltoolshttridsinlineisobandjquerylibjsonliteknitrlabelinglatticelifecyclelme4loolubridatemagrittrMASSMatrixmatrixStatsmemoisemetRologymgcvmimeminqamodelrmunsellnlmenloptrnumDerivopensslpillarpkgbuildpkgconfigplyrposteriorprettyunitsprocessxprogresspspurrrQuickJSRR6raggrappdirsRColorBrewerRcppRcppEigenRcppParallelreadrreadxlrematchrematch2reprexreshape2rlangrmarkdownrobustbaserstanrstudioapirvestsassscalesselectrStanHeadersstringistringrsyssystemfontstensorAtextshapingtibbletidyrtidyselecttidyversetimechangetinytextzdbutf8uuidvctrsviridisLitevroomwithrxfunxml2yaml

Fitting football models and visualizing predictions with the footBayes package

Rendered fromfootBayes_a_rapid_guide.Rmdusingknitr::rmarkdownon Oct 25 2024.

Last update: 2023-08-31
Started: 2022-01-26